CSC 631: High-Performance Computer Architecture
Implementing the Pinkie Processor in C

Instructor: Haidar M. Harmanani
Due: December 9, 2022

October 14, 2022

1 The Pinkie Machine

The Pinkie processor is a 32-bit RISC-based superscalar architecture that is based on the ARM processor.
It is a second generation Pinky machine that has two cores, and a 256K byte-aligned memory. In order to
simplify the simulation, we will be assuming two memories: a data memory as well as an instruction memory,
we will also assume that the memory is 32-bit word aligned. That is, no need to increment the PC by 4 in
order to move to the next memory location.

The Pinkie processor has two cores and total of 64 general purpose registers, all of which are 16 bits.
These include 32 general-purpose integer registers, W0-W31, and 32 general-purpose floating-point registers,
FO0-F31. The Pinkie processor has also a set of special purpose registers for functions, return values,
temporary registers, and global registers, as shown in Table 1. Although not very efficient, the register file
is the only set of registers in the pinky machine and will be shared across both cores. Each has core has an
integer unit ALUs, a Multiplier, and a floating point ALU.

Figure 1 illustrates the Pinkie processor instruction set architecture which are detailed in Table 1. The
ISA includes four types of family set ISA:

1. The D-Type refer to mostly load and store operations.
2. The R-Type refer to register type instructions.
3. The I-Type refers to immediate instructions.

4. The B-Type refers to branch instructions

14 o

4

o

Opcode ‘

Address

Base Register

Source/Destination

D

14 o

s

0

Opcode ‘

Source 2 ‘ ShiftAmt

Source 1

Destination

R

9

4

Opcode ‘

Immediate ‘

Sourcel ‘ Destination

Opooce ‘

Address

Opcode ‘

Address

Opcode ‘

Figure 1: Pinky Machine ISA

CSC 631: High-Performance Computer Architecture 2

The Pinkie machine a 4-stage pipeline and includes the following stages: Instruction Fetch (IF), In-
struction Decode (ID), Instruction Issue (II), Execute (EX), Memory (M), and Writeback (WB). Assume
that all integer instructions have a latency of one, and integer instructions do not contend resources with
FP instructions. Load and store instructions have a latency of three and the B-Type which have a latency
of two. The floating point adder/subtractor has a latency of at least three, the floating point multiplier a
latency of at least six, and the floating point divider has at least a latency of 24. However, your program
should allow the user to override these values for simulation purposes. The system can perform concurrently
integer operations, floating point additions, floating point multiplications, and floating point divisions.

Programs are stored in the memory and are indexed by the program counter (PC). All instructions are
32 bits in length, and are word aligned. Register W29 is used as the subroutine link register, and stores
the return address when Branch with Link operation is performed. To return from a subroutine, a return
instruction would restore the PC from the link register. We will assume that there no exceptions at this
stage and we will not handle them. Pinkie instructions are made to execute conditionally by postfixing
them with the appropriate condition code field:

ADDS (W11, W11,W31) // address 9
BEQ(12) // address 10
ADD (W12, W13, Wi14) // address 11

// address 12

Data processing instructions do not affect the condition code flags but the flags can be set by using “S”.
CMP does not need “S”. When executing branch instructions and for simplicity, the processor will use the
address in the instruction as is. That is, there will be no for any shifting or additions. To ensure that the
simulation ends, we will store a halt instruction in the last line of the program. The corresponding datapath
for the Pinkie processor is shown in Figure 2.

The superscalar Pinkie processor supports out-of order execution via a scoreboard. The scoreboard
has a number of reservation stations. The number of reservation stations for each functional unit is fully
parametrizable, i.e., the number of reservation stations for each FU, and the number of execution cycles
for each FU should all be the inputs to your simulator. Instructions will only execute if all of their data
dependencies have been resolved, but they may issue in any order.

2 C Elements for an Instruction Set

There are four elements that you would need to implement in order to simulate an instruction set. These
are as follows:

1. Opcodes
2. Mnemonics

3. Memory

4. Hardware elements including registers, ALUs, and interconnection components

We will focus on this lab on the design and implementation of a Pinkie processor architecture that
implements the instruction set shown in Figure 1.

Register \ Purpose \ Effect or Usage ‘
FO - F31 Floating point registers
WO - W7 | procedure arguments/results | Passing arguments to methods
W8 - W18 Temporary registers. Values will not be saved.
W19 - W29 Saved
W30 Link register W30 <« PC
W31 The constant value 0

Table 1: Pinkie Processor Registers

Fall 2018

CSC 631: High-Performance Computer Architecture

’ OpCode \ Instruction \ Mnemonic Effect
0 HALT HALT Halts execution
1 LDW LDW(W,, address, displacement) | PC++; W, + M[address + displacement]
2 STW STW (W,, address, displacement) | PC++; M[address + displacement] «+ W,
3 LDWD LDWD(W,, address, displacement) | PC++; F,, < M[address + displacement]
4 STWD STWD(W,, address, displacement) | PC++; M[address + displacement] < Fy,
5 ADD ADD(W,, Wy, W) PC++; R[W,] = R[W,] + R[W,]
6 SUB SUB(W,, Wy, W) PC++; R[W,] = R[W,] — R[W,]
7 ADDD ADDD(F,, F,, F,) PC++; R[F,] = R[Fy] + R[F,]
8 SUBD SUBD(F,, Fy,) PC++; R|F,] = R|Fy] — RIE]
9 MUL MUL(W,, Wy, W) PC++; R[W,] = R[W,] x R[W,]
10 MULD MULD(F,, Fy, F.) PC++; R[F,] = R[Fy] x RIE]
11 DIV DIV(F,, Fy, Fo) PCH++; R[W,] = R[W,)] / R[W,]
12 DIVD DIVD(F,, Fy, F,) PC++; R[F,] = R[Fy] / RIF
13 AND AND(W,,, Wy, W) PC++; R[W,] = R[W,] & R[W,]
14 OR OR(W,, Wy, W,) PC++; R[W,] = R[W,] | R[W,]
15 XOR XOR(W,, Wy, W) PC++; R[W,] = R[W,] & R[W,]
16 ADDS ADDS(W,, W, W.) PCt1: RiW,] = RIW,] + RW.;
Z <+ (R[W,]==0)71:0
N« (RW,]<0)?1 : 0
17 SUBS SUBS(W,, Wy, W.) PC++; R[W,] = R[Ws] — R[W,]
Z (RWo==0)71:0
N« (RW,]<0)?1 : 0
18 SL SL(W,, Wy, ShiftAmt) PC++; R[W,] = R[W,] << ShiftAmt
19 SR SR(W,, Wy, ShiftAmt) PC++; R[W,] = R[W,] >> ShiftAmt
20 SR SR(W,, Wy, ShiftAmt) PC++; R[W,] = R[W,] >> ShiftAmt
12-4096 Not Used

Table 2: Pinkie Processor Instruction Set Summary

3 Deliverables

1. Develop a complete C or Python model for the Pinky processor. You will be supplied with a working
C skeleton. Complete all missing instructions in the program. That includes the instructions as well
as the code. Please also modify the fetch and decode unit. This will include the following;:

(a) Define the Opcodes

#define OP_HALT 0xz00
#define OP_LDW 0Oxz01
#define OP_STW 0x02

#define OP_SR OzB

#define WO 0z0
#define W1 Ozl
#define W2 0z2

#define W31 OzlF
(b) Create the Mnemonics

#define HALT
#define LDW(DestReg, BaseReg, Address)

OP_HALT << 20

(OP_LDW << 20) | (Address << 10) | (BaseReg <<

Fall 2018

CSC 631: High-Performance Computer Architecture 4

Pinky Processor
— Version 0.2

B
h
Data

3
g E' —» src 1 Q E-
s o 2 e} (9
PC > g = —» IR P src 2 2 © £
S0 oo
DS 2 =
£ —» dest @

Read/Write

[

Opcode

Figure 2: Data path for the Pinky Machine

#define STW(SourceReg, BaseReg, Address) (OP_STW << 20) | (Address << 10) | (BaseReg << 5)
#define ADD(DestReg, SourceReg2, SourceRegl) (OP_ADD << 20) | (SourceReg2 << 15) | (SourceRegl

2. All instructions are stored in memory using 16 contiguous bits. Thus, instructions have to be decoded
in order to decipher the operations. For example, in order to extract the register index as well as the
immediate value from an I-Type instruction, one needs to extract the information as follows: M[iIndex
& OxOOFF and (iIndex >> 2) & O0xOOOF , respectively.

3. Implement the scoreboard using reservation stations.

4. The input to the simulator should be a text file containing assembly instructions specified in the above
format. Read the input file and proceed your simulation with reading the file line by line as if you are
fetching binary instructions from an instruction memory. The ID stage is also simplified to parsing
the assembly instruction as opposed to decoding the binary. Other inputs are: FU execution cycles as
well as their allocated reservation station numbers.

5. Develop a set of programs that test all the implemented operations.

6. Print debugging information to the screen that can help the user debug the memory and the architec-
ture. This includes the reservation station status, instruction status, and the register result status on

every cycle.

7. Test your code with a variable number of latencies, instructions, and operations. Report each simulated
program along with achieved speed-up.

Fall 2018

